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Abstract 

Time-varying electromagnetic field observed on the ground or at a spacecraft consists of contributions from (i) 
electric source currents, such as those in the ionosphere and magnetosphere, and (ii) corresponding fields induced by 
source currents within the conductive Earth’s interior by virtue of electromagnetic induction. Knowledge about the 
spatio-temporal structure of inducing currents is a key component in ionospheric and magnetospheric studies, and 
is also needed in space weather hazard evaluation, whereas the induced currents depend on the Earth’s subsurface 
electrical conductivity distribution and allow us to probe this physical property. In this study, we present an approach 
that reconstructs the inducing source and subsurface conductivity structures simultaneously, preserving consistency 
between the two models by exploiting the inherent physical link. To achieve this, we formulate the underlying inverse 
problem as a separable nonlinear least-squares (SNLS) problem, where inducing current and subsurface conductivity 
parameters enter as linear and nonlinear model unknowns, respectively. We solve the SNLS problem using the vari-
able projection method and compare it with other conventional approaches. We study the properties of the method 
and demonstrate its feasibility by simultaneously reconstructing the ionospheric and magnetospheric currents along 
with a 1-D average mantle conductivity distribution from the ground magnetic observatory data.
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Graphical Abstract

Introduction
Time variations of magnetic field that we observe on the 
ground or at a spacecraft represent a superposition of 
the inducing (primary) and induced components. There 
is substantial interest in knowing both inducing and 
induced components of the field as accurately as possi-
ble. On the one hand, knowledge about space-time vari-
ability of the inducing field constrains the state of source 
electric currents in the ionosphere and magnetosphere 
(Yamazaki and Maute 2017; Balasis and Egbert 2006; 
Tsyganenko 2019), which in turn represents a crucial 
input for accurate geomagnetic field modelling (Maus 
and Weidelt 2004; Finlay et al. 2017) and space weather 
hazard evaluation (Pulkkinen et  al. 2003; Kelbert 2020; 
Juusola et al. 2020). On the other hand, relation between 
the inducing and the induced field variations, governed 
by Maxwell’s equations, can be used to probe the elec-
trical conductivity distribution in the Earth’s subsurface 
(Olsen 1999; Kuvshinov 2012; Kelbert et al. 2009). How-
ever, separation of the magnetic field into inducing and 
induced components is often non-trivial owning to their 
nonlinear relationship that depends on the 3-D distribu-
tion of electrical conductivity in the Earth’s interior. Our 
goal here is to elaborate on this problem further.

To keep the study concise and focused, we make several 
assumptions that are implied in the derivations and dis-
cussions below. First, we concentrate on time-variations 

with periods longer than a few hours, which is beyond 
the band where a simple plane-wave source assumption 
is valid (this assumption can be used to model external 
source fields (Kelbert and Lucas 2020) and can be used 
in the magnetotelluric method (Chave and Jones 2012) 
for probing the electrical conductivity of subsurface). 
Second, we assume that field variations are due to the 
extraneous electric currents and the corresponding elec-
tromagnetic response from the conductive Earth’s inte-
rior. In other words, the contributions from all other 
magnetic field sources, such as the crust or the core, were 
subtracted from the data (it is clear that some residual 
fields from these sources are always present, but these 
problems are beyond the scope of our study). Further, the 
extraneous electric currents are assumed to have their 
origin in the ionosphere and magnetosphere. By this, we 
exclude the ocean-induced electromagnetic fields, which 
require dedicated modelling and inversion approaches 
(e.g., Velímský et al. 2018).

In the most general form, the extraneous source struc-
ture needs to be parameterized with spatially heterogene-
ous functions and estimated from the data along with the 
subsurface electrical conductivity distribution by solving 
a corresponding inverse problem. However, joint esti-
mation of conductivity and external field structures rep-
resents a notoriously difficult task. Conventionally, the 
Gauss method has been used to separate the magnetic 
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field into time  series of Spherical Harmonic (SH) coef-
ficients of internal and external origins (Backus et  al. 
1996). By relating internal and external SH coefficients, 
one can estimate a transfer function between them and 
perform the inversion in terms of subsurface electrical 
conductivity (Olsen 1999; Schmucker 1999; Kuvshinov 
2012) or fit the time  series of SH coefficients directly 
(Velímský and Knopp 2021). However, this approach is 
only applicable to potential fields where inducing field 
contribution is external to the observer. Moreover, due to 
sparse measurements, one is typically limited to using a 
small set of Spherical Harmonic functions to describe the 
inducing and induced parts of the field (Kuvshinov et al. 
2021; Velímský and Knopp 2021).

Recognizing these limitations, a number of recent stud-
ies (Koch and Kuvshinov 2013; Sun et al. 2015; Guzavina 
et  al. 2019; Egbert et  al. 2021; Zhang et  al. 2022) have 
adopted an alternative strategy where the source struc-
ture is estimated given some prior knowledge about 
the subsurface conductivity. With this estimated source 
structure, the inversion in terms of subsurface conductiv-
ity is subsequently performed and the updated conduc-
tivity model can again be used to re-estimate the source 
coefficients. This approach (i) allows for a more general 
ansatz to describe the source geometry (Zenhäusern et al. 
2021; Egbert et al. 2021), (ii) enables derivation of alter-
native families of transfer functions (Püthe and Kuvshi-
nov 2014; Guzavina et al. 2019), which are not limited to 
the potential field assumption, and (iii) facilitates incor-
poration of the prior knowledge on the induction effects 
due to the ocean and marine sediments (Grayver et  al. 
2021). Listed points make it possible to mitigate or com-
pletely overcome the limitations imposed by the conven-
tional Gauss method. In these aforementioned studies, 
determination of the inducing source field and the man-
tle conductivity is performed in an alternating manner on 
the two separate model spaces (hereinafter, we term this 
procedure an ”alternating approach”). Such separate esti-
mation of the two model spaces is assumed to result in 
progressively refined knowledge of both the source and 
conductivity models.

In this study, we develop this idea further and pose a 
problem in a general form that allows us to simultane-
ously estimate the source and subsurface conductivity 
directly from the data. Since the model space consists of 
one part (i.e., inducing source currents), upon which the 
dependence of the observable is linear, and another part 
(i.e., subsurface electrical conductivity), which enters the 
objective in a nonlinear manner, the underlying inverse 
problem (under squared loss) belongs to a class of spe-
cial optimization problems known as the Separable Non-
linear Least-Squares (SNLS) problem. We will show that 
the naive ”alternating approach” described above is the 

simplest way of solving the SNLS problem, although it 
may lack consistency and suffer from slow convergence. 
We will explore more efficient ways of solving the SNLS 
problem. In particular, the variable projection method 
(hereafter referred to as VP) has been proposed as an 
optimal method for solving SNLS problems that benefits 
from both computational efficiency and fast convergence 
(Golub and Pereyra 1973, 2003). In essence, VP exploits 
the linear dependency in one part of the model and esti-
mates this part via linear least squares at each iteration, 
thus optimally (in least-squares sense) projecting the 
complete model space onto a reduced subspace for effi-
cient nonlinear optimization.

The advantage of variable projection naturally appeals 
to a number of geophysical inverse problems where 
the unknown parameters intrinsically constitute sepa-
rable least squares. Such behavior is typical of seis-
mic wave propagation and electromagnetic induction, 
where source characterization is linearly filtered by a 
medium response that depends nonlinearly on medium 
properties. In the last decade, this algorithm has been 
recognized in seismology as an efficient way to invert 
for velocity structure while simultaneously character-
izing the source (Rickett 2013; De Ridder and Maddi-
son 2018), the source-related calibration parameters (Li 
et  al. 2013), or both the source and the receiver factors 
(Hu et al. 2021). Despite an early conceptualization (Fain-
berg et al. 1990), this method, to our knowledge, has not 
yet been elaborated in the context of electromagnetic 
induction problems, where the merit of VP is potentially 
much more pronounced: the full model inversion includ-
ing the source and conductivity, which is prohibitive due 
to aforementioned high dimension and nonlinearity, 
becomes tractable thanks to linear variable projection. 
Here we present the application of the VP method to a 
problem of electromagnetic induction sounding.

We demonstrate that not only does VP enable simul-
taneous estimation of the inducing field structure and 
the electrical conductivity using a natural physical link 
between them, but it also provides insights into the inter-
play between determination of inducing field and con-
ductivity models.

Methods
Electromagnetic (EM) field variations are governed by 
Maxwell’s equations, which in the frequency domain read

where ω is the angular frequency, r is the position vector, 
σ(r) ∈ R denotes electrical conductivity of a medium, 

(1)
∇ × E = −iωB,

1

µ0
∇ × B = σE + j,
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and B(r,ω) and E(r,ω) are the magnetic and electric 
fields, respectively. j(r,ω) is the extraneous (impressed) 
current density. The extraneous currents are assumed to 
originate within the ionosphere and magnetosphere, sep-
arated from the solid Earth by a layer of insulating air. We 
neglected displacement currents and took µ = µ0 for the 
magnetic permeability. Here, we adopted the following 
convention for the Fourier transform:

The solution of Eq. (1) can be found when both the 
inducing source j and the conductivity σ are given. In this 
case, the magnetic field due to an arbitrary distribution of 
current density can be formally expressed as

where G is the Green’s tensor of the medium (Kuvshinov 
2008) and � is the volume occupied by extraneous cur-
rents. A corresponding time-domain counterpart con-
tains a temporal convolution, and has the form

Independent of the domain where we operate, the model-
ling process can always be expressed in the operator form

where L(σ ) : (Vj(�j))
3 �→ (VB(�B))3 is a linear opera-

tor, mapping an electric current field to a vector magnetic 
field, and L(·) : Vσ (�σ ) �→ L((Vj(�j))

3, (VB(�B))3) is a 
nonlinear function that maps the conductivity distribu-
tion into a linear operator. Here, �j , �σ and �B are the 
domains of inducing currents, induced currents, and 
observed magnetic fields, respectively. Vj , Vσ , and VB 
are function spaces on the corresponding domains, and 
L(U ,V ) denotes the linear space of the linear maps from 
U to V.

Equation  5 shows that the magnetic field is related 
to the source by a linear operator, which is a nonlinear 
functional of the electrical conductivity. The equivalent 
for the electric field is straightforward, but we omit it 
because we only consider magnetic field observations 
in this study. We can thus express the forward model-
ling in a concise algebraic form as

(2)
X(ω) = F [x(t)] =

1
√
2π

∫ +∞

−∞

x(t)e−iωt dt,

x(t) = F
−1[X(ω)] =

1
√
2π

∫ +∞

−∞

X(ω)eiωt dω.

(3)B(r,ω; σ , j) =

∫

�

G(r, r′,ω; σ) · j(r′,ω) dr′,

(4)

B(r, t; σ , j) =

∫ t

−∞

∫

�

G(r, r′, t − t ′; σ) · j(r′, t ′) dr′ dt ′.

(5)B = L(σ ) j,

(6)dmod(m, c) = F(m) c,

where dmod is the modelled data vector, m is a param-
eterization of the conductivity model, c is the inducing 
source vector, and F(m) is a functional of m that links 
the field to the extraneous currents. The specific form of 
F(m) depends on the adopted discretization and parame-
terization of σ and j , but the stated general algebraic form 
accommodates the full set of modelling approaches. Our 
goal is to estimate the unknown variables consisting of 
electrical conductivity model m and extraneous currents 
c from observations of the magnetic field taken at speci-
fied locations and times. To achieve this goal, we seek a 
combination of m and c that minimizes the data misfit

where dobs is the observational data vector, given by mag-
netic field observations in our case, and d(·, ·) denotes the 
distance metric induced by the corresponding Banach 
space. A popular choice for such metric in EM induction 
soundings is the distance induced by the vector norm 
weighted by the data covariance

where Cd is the data covariance matrix. Note we use 
the superscript H to denote the Hermitian transpose 
of the matrix or vector, as the data vector may be com-
plex. In the absence of co-variances, the data samples 
are assumed to be mutually independent, in which case 
Cd = diag

(
s2i

)
 , where s2i  is the variance of the i-th datum. 

Introducing W = C
−1/2
d

= diag(s−1
i ) , the data misfit 

can be rewritten as the squared ℓ2 norm of the weighted 
residual

Here, � · �2 denotes the ℓ2 norm, r = dobs − F(m)c is the 
residual vector, and rw = Wr , dw = Wd , and Fw = WF 
are the weighted forms of the residual vector, the data 
vector, and the linear operator, respectively. To mitigate 
the inherent non-uniqueness of the problem, we add 
a regularization term �R(m) , where R(·) is the penalty 
function, and � is the regularization strength. Here, we 
consider the penalty function that penalizes the ℓ2 norm 
of model structure, given by R(m) = 1

2�Ŵm�22 , where 
Ŵ is known as the Tikhonov matrix. In the experiments 
that follow, we shall use a first-order difference operator 
as Ŵ to enforce the smoothness of the model. Similarly, 

(7)χ2 = d
(
dobs,dmod(m, c)

)
= d

(
dobs,F(m) c

)
,

(8)
χ2 =

1

2

(
d
obs − d

mod
)H

C
−1

d

(
d
obs − d

mod
)

=
1

2

(
d
obs − F(m) c

)H

C
−1

d

(
d
obs − F(m) c

)
,

(9)
χ2 =

1

2
�rw�22 =

1

2

∥∥∥W
(
dobs − F(m) c

)∥∥∥
2

2
=

1

2

∥∥∥dobsw − Fw(m) c
∥∥∥
2

2
.
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we can also regularize the linear parameters directly, i.e., 
�c
2
‖Ŵc c‖

2
2 . The full optimization problem is then given by

Regularization on the source parameters c allows the 
use of prior knowledge on the source geometry (Sun 
et al. 2015; Laundal et al. 2021), e.g., while using a high-
dimensional parameter space for the source. This would 
become beneficial or even necessary when an accurate 
complex source estimation is required. In this study, 
however, we shall proceed by defining �c = 0 , as our 
experiments all assume a low-degree source structure. 
Generalization to include the regularization on c is math-
ematically straightforward but further complicates the 
formulas, and hence is only documented for complete-
ness in Appendix A.

Seeking a solution to the stated problem directly in the 
joint model space of m and c induces a fully nonlinear 
least-squares problem in a high-dimensional space. We 
note again that the magnetic field is a linear functional 
of the extraneous currents represented by c , but a non-
linear functional of the subsurface electrical conductiv-
ity expressed through m . This particular structure of 
the inverse problem with the data misfit defined in Eq. 9 
makes it an example of the so-called separable nonlin-
ear least squares (SNLS). While the problem in Eq.  10 
can be linearized and solved in the full model space, this 
”naive” approach is inefficient and prohibitive for prob-
lems of interest. Fortunately, the particular structure of 
an SNLS problem allows us to adopt more efficient solu-
tion strategies.

Variable projection approach
Variable projection (VP) has been first proposed by 
Golub and Pereyra (1973) as an optimization method for 
solving SNLS problems. Exploiting the linear depend-
ency on c , at each given conductivity model m , the best-
fitting linear part can be obtained via a linear regression 
c = ĉ(m) = F†w(m)dobsw  , where F†w denotes the Moore–
Penrose pseudoinverse of Fw . We use ĉ to explicitly 
denote the dependency of the least-squares solution of 
c on m . With the linear regression at each iteration, the 
optimization is then optimally (in statistical sense) con-
strained to the nonlinear part of the model space

(10)
min
m,c

1

2

∥∥∥dobsw − Fw(m) c
∥∥∥
2

2
+

�

2
�Ŵm�22 +

�c

2
�Ŵc c�

2
2.

(11)

min
m

1

2

∥∥dw − Fw(m) ĉ(m)
∥∥2
2
+

�

2
�Ŵm�22

= min
m

1

2

∥∥dw − Fw(m)F†w(m)dw
∥∥2
2
+

�

2
�Ŵm�22

= min
m

1

2

∥∥∥P⊥
Fw

(m)dw

∥∥∥
2

2
+

�

2
�Ŵm�22,

where P⊥
Fw

= I − FwF
†
w is a projector onto the orthogo-

nal complement of the range of Fw(m) . Note we used 
d = dobs for brevity.

A minimum to the nonlinear least-squares problem 
in Eq.  11 can be found using either a gradient-based or 
a Newton-based optimization method. In both cases, 
the update on the nonlinear model involves evaluation 
of the Fréchet derivatives with respect to the nonlinear 
parameters. In turn, this requires us to incorporate the 
implicit dependency of c on m . In what follows, we will 
use DA to denote the derivative of A with respect to m , 
where A is a functional of m . In its discrete form where 
A ∈ C

i1×i2×···il , the result DA is a tensor of order l + 1 , 
and the last dimension denotes the differentiation com-
ponent. More explicitly

For l ≥ 2 , matrix multiplications involving DA are always 
assumed to be performed on the leading 2 dimensions. 
Golub and Pereyra (1973) derives the expression for the 
gradient of the objective function and the Jacobian of the 
residual vector in terms of pseudoinverses and deriva-
tives of the linear operator Fw . We adopt the notations 
used in Hong et  al. (2017), and introduce the following 
two partial Jacobians, as derivatives taken explicitly on 
the original data misfit without variable projection (Eq. 9)

Now, the linear projection can also be stated as 
ĉ = −J†c dw , and the orthogonal projector is given by 
P⊥
Fw

= I − JcJ
†
c = P⊥

Jc
 . We note that the two explicit Jaco-

bians are coupled in the model space (i.e., Jm and Jc are 
dependent upon c and m , respectively). This will be 
clearly seen in the case of VP, where the complete Jaco-
bian of the variable-projected misfit term (Eq.  11) is 
given by

Invoking the derivative of pseudoinverse (see Golub and 
Pereyra 1973 for derivation details)

(12)(DA(m))i1i2···il+1
=

∂Ai1i2···il

∂mil+1

.

(13)
Jc =

∂rw

∂c
= −Fw(m),

Jm =
∂rw

∂m
= −DFw(m) c = DJc c.

(14)
J(m, ĉ(m)) = Drw = Jm + Jc Dĉ = Jm − Jc DJ†c dw .

(15)
DA

† = − A
†
DAA

† + A
†
(
A
†
)H

(DA)
H
P

⊥
A

+
(
P

⊥
AH

)H

(DA)
H

(
A
†
)H

A
†
,
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the complete Jacobian of the variable-projected system 
can hence be reiterated and expressed solely in terms of 
Jm , Jc together with its derivative and pseudoinverse

The last step uses the fact that 
AA†(A†)H =

(
AA†

)H(
A†

)H
=

(
A†AA†

)H
=

(
A†

)H 
and A(P⊥

AH )H ≡ 0 . Part of the dependency of c upon m , 
namely the 3rd term in Eq. 15, has no contribution to the 
complete Jacobian, since it is perpendicular to Jc . The 
complete Jacobian reads

Note that if an inverse problem were posed solely in the 
space of conductivity model, then only the first term, 
namely Jm , would be present. The trailing two terms 
involve the dependency of the source estimate on the 
change in the subsurface conductivity, confining the 
model updates of m to the hyperplane defined by the 
regression of c . Reintroducing linear operators via Eq. 13, 
we arrive at the expression for the Jacobian of the resid-
ual vector

Accordingly, the gradient of the misfit function reads

The second line uses the fact that (P⊥
Fw

)2 = P⊥
Fw

 , and 
F†wP

⊥
Fw

= F†w(I − FwF
†
w) = 0 , and the last equality uses 

Jm = −DFw ĉ and rw = P⊥
Fw
dw . Equations  18-19 define 

the first order Fréchet derivatives with the variable pro-
jection. To avoid higher order derivatives, we use the 
Gauss–Newton algorithm to update conductivity model, 
where the Hessian is approximated as H ≈ Re[JH J] . The 
model update thus takes the form

(16)

J(m, ĉ(m)) = Jm − Jc

(
−J†c DJc J

†
c + J†c(J

†
c)
H (DJc)

HP⊥
Jc

+
(
P⊥
JHc

)H

(DJc)
H (J†c)

H J†c

)
dw

= Jm − JcJ
†
c DJc ĉ − JcJ

†
c(J

†
c)
H (DJc)

HP⊥
Jc
dw + Jc

(
P⊥
JHc

)H

(DJc)
H (J†c)

H ĉ

= Jm − JcJ
†
cJm −

(
J†c

)H
(DJc)

HP⊥
Jc
dw .

(17)
J(m, ĉ(m)) = Jm − JcJ

†
cJm −

(
J†c

)H
(DJc)

HP⊥
Jc
dw

= Jm − JcJ
†
cJm −

(
J†c

)H
(DJc)

H rw .

(18)J = −P⊥
Fw

DFw F†wdw − (P⊥
Fw

DFw F†w)Hdw .

(19)

gradχ2 = Dχ2 = Re
[
JH rw

]
= −Re

[(
P⊥
Fw

DFw F†wdw

)H

rw + dHw P
⊥
Fw

DFw F†wrw

]

= −Re
[(

DFw F†wdw
)H

P⊥
Fw

(P⊥
Fw
dw) + dHw P

⊥
Fw

DFw F†w(P⊥
Fw
dw)

]

= −Re
[(

DFw ĉ
)H

P⊥
Fw
dw + 0

]
= Re

[
JHmrw

]
.

(20)
(
Re

[
JH J

]
+ �Ŵ

T
Ŵ

)
�m = −Dχ2 − �Ŵ

T
Ŵm.

We refer to the inversion scheme that calculates Jaco-
bian via Eq.  18 as the full-VP scheme. In the case of a 
1-D radial conductivity model, the calculation of DFw is 
cheap and can often be obtained semi-analytically. For a 
general 3-D conductivity model, the explicit evaluation 
and storage of DFw is often prohibitive. In this case, the 
adjoint method (Pankratov and Kuvshinov 2010; Egbert 
and Kelbert 2012) can be used to efficiently calculate 
the gradient and create a low-rank representation of the 
DFw (Egbert 2012) or solve Eq. (20) for the model update 
using Krylov subspace methods, both avoiding storage 
and evaluation of large matrices (e.g., Jacobian). However, 
even without explicit evaluation of Jacobian, the full-VP 
algorithm entails additional calculations due to interac-
tions between the linear and nonlinear parts of the model 
space. It is therefore desirable to explore approximations 
that allow for fewer evaluations of DFw.

Two such approximations have been proposed by Ruhe 
and Wedin (1980). One option is to drop the last term 
in Eq.  17, effectively dropping the 2nd term in Eq.  18, 
yielding

We adopt the terminology used by Hong et  al. (2017) 
and hereinafter refer to this as the VP-RW2 scheme. The 
dropped term is considered a higher order refinement. 
This scheme retains high convergence rate and accu-
racy, while outperforming the full-VP in terms of com-
putational efficiency (Ruhe and Wedin 1980; O’Leary and 
Rust 2013). The second option is to drop both the 2nd 
and the 3rd terms in Eq.  17, leading to the very simple 
form

(21)J = −P⊥
Fw

DFw F†wdw = P⊥
Jc
Jm.
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hereinafter referred to as the VP-RW3 scheme. This 
is equivalent to assuming fixed inducing currents (i.e., 
Dc = 0 ) at each iteration while searching for updates on 
the conductivity structure. This is in contrast to both full-
VP and VP-RW2 schemes, where Jacobian contains addi-
tional information on the implicit feedback of the source. 
These three variants are closely related in the scope of 
VP but have different levels of approximation, and will 
be compared in the context of EM induction sounding. 
Despite poor performance of the VP-RW3 scheme pre-
viously reported by Hong et  al. (2017) for matrix fac-
torization problems, we chose to consider this scheme 
here, particularly because of its resemblance to what we 
call the ”alternating approach”, which we will revisit later 
under the framework of variable projection.

As a final remark, we observe that the gradient Dχ2 
always has the same expression as in Eq.  18, regardless 
of the approximation used for constructing the Jacobian. 
This is due to the fact that as ĉ = F†wdw guarantees that 
the source parameters minimize the least-squares misfit 
of the data, the residual inevitably lives in the orthogo-
nal complement of the linear operator, and only manifest 
itself through Jm . In other words, as long as the current 
source estimation minimizes the data misfit, gradients 
do not ”sense” the implicit feedback of the source, but 
always view the source as truly fixed (as if it were the 
ground truth model of the source), as has been noticed 
by Aravkin and van Leeuwen (2012). Therefore, purely 
gradient-based optimization schemes are not affected 
by the choice of the variant of VP. Optimization schemes 
utilizing higher order information, such as Gauss–New-
ton method and Levenberg–Marquardt algorithms, are 
however different for different VP variants.

Alternating approach
Conventionally, models of magnetospheric/ionospheric 
current systems and models of the mantle electrical 
conductivity are estimated separately, using dedicated 
approaches. Combining these procedures, Koch and 
Kuvshinov (2013) proposed a scheme where, starting 

(22)J = −DFw F†wdw = Jm,
from an initial model of subsurface conductivity, one first 
obtains a preliminary estimate of inducing currents, then 
re-calculates the conductivity model with the estimated 
source, and then goes back to refining the source with 
the ”updated” mantle conductivity. This procedure can in 
principle be repeated several times, until model estimates 
or data misfits reach certain convergence criteria. The 
same alternating method has most recently been utilized 
by Zhang et al. (2022) to invert for the conductivity in the 
mantle transition zone (MTZ), in combination with their 
physics-based representation of the inducing currents.

Similar to variants of the variable projection, the alter-
nating approach also offers a way to optimize on external 
currents and mantle conductivity simultaneously, with-
out resorting to fully nonlinear inversion schemes. It can 
be viewed as a conglomeration of successive inversions, 
conventionally carried out independently with respect 
to external currents and mantle conductivity. The major 
difference from VP is that in the case of a naive alternat-
ing approach, once one part of the model is estimated, 
inversion on the other part is carried out in a complete 
standalone stage to minimize the objective. This behavior 
is especially pronounced during inversion of the electri-
cal conductivity, where a significant number of iterations 
are usually needed to capture the nonlinear dependence 
of the predicted data on the conductivity model. In VP, 
estimate on the source is projected and updated at each 
iteration step and is only used for one update, whereas 
for alternating approaches, all iterations on the conduc-
tivity model in one inversion phase are conducted under 
a fixed source. Such approach may potentially lead to 
high redundancy in iterations and result in biased model 
estimates.

In this study, we revisit and generalize the idea of the 
alternating approach, by implementing a flexible version 
of the inversion scheme for our problem. Our imple-
mentation is based on nonlinear model updates: at each 
iteration, update on the nonlinear model is generated 
using the Gauss–Newton method, while the source is 
kept fixed. At iterations pre-defined by certain criteria 
(referred to as linear update criteria), the inducing source 
is updated. The scheme can be summarized by the fol-
lowing pseudo-code:
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By varying the linear update criterion, this implementa-
tion can potentially incorporate a spectrum of inversion 
schemes. For instance, by disabling update on the linear 
model until the inversion on the nonlinear part has con-
verged (or stagnated), one obtains one end-member sce-
nario, which is exactly the approach described in Koch 
and Kuvshinov (2013). This scenario contains the least 
frequent linear model updates. In contrast, by forcing 
linear model regression at each iteration, one obtains the 
other end-member, a scheme equivalent to the VP-RW3 
(Eq. 22). A customized linear update criterion allows for 
intermediate solutions between these two end-members.

Both VP and alternating approaches provide alternative 
means to solve the joint model space inversion (Eq. 10). 
Although beyond the scope of this work, it can be fur-
ther shown that the linear system for nonlinear updates 
resulting from VP/alternating approaches at each itera-
tion is also closely related to that obtained in the joint 
model space inversion (see Appendix B). Therefore, these 
surrogate methods all sample subsets of the manifold 
describing the objective function in the higher dimen-
sional joint model space.

As a final remark, we discuss in brief the computa-
tional aspects of different variants of VP and alternating 
approaches assuming a common scenario where evalu-
ation of DFw(m) is the most resource-demanding part 
in computation of Fréchet derivatives. Specifically, each 
evaluation of the matrix–vector multiplication uH (DFwv) 
or vHDFHw u would incur a forward or an adjoint solution 
of the electromagnetic modelling problem, respectively, 
with u and v being arbitrary vectors of matching dimen-
sions. Following Eqs. 18–22, evaluation of the Jacobians 
in VP-RW2 and VP-RW3 involves only one evaluation 
of DFw , while full-VP incurs two evaluations. Therefore, 
the computational cost per iteration for VP-RW2 and 
VP-RW3 is roughly half of that for full-VP. Compared 
to VP-RW3, VP-RW2 involves an additional linear pro-
jection in calculation of the Jacobian. Since the cost for 

(23)

Iteration k = 0 : c(0) = F†w(m(0))dw

Iteration k > 0 : Calculate J(k−1)
m = Jm

(
m(k−1), c(k−1)

)
,

g(k−1) = Dχ2(m(k−1), c(k−1)) + �Ŵ
T
Ŵm(k−1).

Solve

(
Re

[(
J(k−1)
m

)H

J(k−1)
m

]
+ �Ŵ

T
Ŵ

)
�m(k) = −g(k−1)

Update m(k) = m(k−1) + �m(k).

If k satisfies linear update criteria, c(k) = F†w(m(k))dw;

Else, c(k) = c(k−1).

linear regression is often marginal in comparison to eval-
uation of derivatives, the difference between the cost per 
iteration between VP-RW2 and VP-RW3 will not play a 
significant role. There is virtually no difference between 
the evaluation of Fréchet derivatives in VP-RW3 and 
alternating approaches, and hence, the two approaches 
should be considered equal in terms of cost per itera-
tion, except for extra linear regressions required at each 
iteration in VP-RW3. As was already mentioned in the 
previous section, in cases where explicit (e.g., for a 3-D 
conductivity parameterization) storage of the Jacobian 
is prohibitive, it can be avoided for all variants of VP or 
alternating approaches by evaluating Jacobian-vector 
products on the fly. Obviously, this still preserves the rel-
ative cost of different methods discussed above.

Forward modelling
We remind the reader that the separation of the joint 
model space into linear and nonlinear parts is an innate 
property of EM induction sounding stemming from the 
governing Maxwell’s equations. Therefore, the formula-
tion provided above is general and will apply to any elec-
tromagnetic imaging problem where both source and 
physical properties are unknown. To test different inver-
sion approaches, we need to choose a specific form of 
inducing source parameterization c and a forward model-
ling operator F(σ ) . We limit the experiment in this study 
to a simple scenario satisfying the following two assump-
tions. First, we consider only observations made within a 
current-free space between the inducing source and the 
induced currents. In other words, the observed magnetic 
field is assumed to be potential ( B = −∇V  ), where the 
potential V can be expanded using Spherical Harmonic 
(SH) functions in the frequency domain as

(24)

V (r,ω) = a
∑

n,m

[
εmn (ω)

( r

a

)n

+ ιmn (ω)

( r

a

)−(n+1)
]
Ym
n (θ ,ϕ),
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where 
∑

n,m ≡
∑N

n=1

∑n
m=−n ; Ym

n (θ ,ϕ) = P
|m|
n (cos θ)eimφ 

is a complex SH function of degree n and order m, with 
P

|m|
n  being Schmidt quasi-normalized associated Leg-

endre functions, r = (r, θ ,φ) is the position vector in 
spherical coordinates, and a is the Earth radius; εmn  and ιmn  
are the external and internal SH coefficients, respectively. 
These assumptions will facilitate the comparison of our 
methods with conventional Gauss-based workflows.

Second, we assume a 1-D radial conductivity structure 
of the Earth (that is, σ(r) ≡ σ(r) ). This assumption allows 
us to use a Q-response to describe the induction in the 

model (Olsen 1999). Q-response is a frequency-depend-
ent global transfer function (TF) that is independent of 
the SH order m for a 1-D radially symmetric conductiv-
ity, and is formally defined as the ratio between the inter-
nal and the corresponding external Gauss coefficients

Then, the forward operator that links magnetic field ( B ) 
with model parameters (external coefficients ε and con-
ductivity σ ) can be stated as follows:

(25)Qn(ω; σ) =
ιmn (ω; σ)

εmn (ω)
.

(26)

Br(r,ω) = −
∑

n,m

[
n
( r

a

)n−1
− (n + 1)Qn(ω; σ)

( r

a

)−(n+2)
]
Ym
n (θ ,ϕ) εmn (ω),

Bθ (r,ω) = −
∑

n,m

[( r

a

)n−1
+ Qn(ω; σ)

( r

a

)−(n+2)
]
∂Ym

n (θ ,ϕ)

∂θ
εmn (ω),

Bϕ(r,ω) = −
∑

n,m

[( r

a

)n−1
+ Qn(ω; σ)

( r

a

)−(n+2)
]

1

sin θ

∂Ym
n (θ ,ϕ)

∂ϕ
εmn (ω).

Fig. 1  Distribution of observatories. The blue triangles show all observatories in the dataset. Note the observatories whose absolute magnetic 
latitudes are greater than 56◦ or less than 5◦ are later excluded from experiments. The red circles mark the observatories used in the experiment 
from the Discussion section
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Equation 26 gives the magnetic field at a position r and 
at frequency ω in terms of unknown variables σ and εmn  , 
which can be written in the vector form as

where B(r,ω) ∈ C
3 is the vector magnetic field in the 

frequency  domain, and Bm
n (r,ω; σ) ∈ C

3 is the transfer 
function related to mode εmn  for a given r and ω , whose 
detailed expression is given in Eq. 26.

While the SH coefficients εmn  appear as coef-
ficients of spherical harmonic expansion for the 
potential magnetic field, they can also be used for 
representing the inducing current. To this end, con-
sider an extraneous sheet current floating at an alti-
tude h, then the sheet current density can be written as 
j(r,ω) = −δ(r − b)êr × ∇H�ext(θ ,φ) , where b = a + h , 
and the external current stream function can be 
expanded in SH using εmn  as

It follows that the coefficients εmn (ω) give the parameteri-
zation of the inducing currents, and constitute the afore-
mentioned source vector c.

We stress here that forward operators with other 
parameterizations of source currents, not limited to a 
potential representation (Egbert et  al. 2021; Zenhäu-
sern et  al. 2021), and a general 3-D conductivity dis-
tribution (Grayver et al. 2021) are possible and can be 
incorporated in the formalism of Eq.  6, but this leads 
to a rather lengthy and technically cumbersome imple-
mentation. Choosing a simplified forward operator 
here allows us to concentrate on studying the prop-
erties of the SNLS problem and variable projection 
method, which we consider to be the main contribution 
of this study.

To capture the temporal behavior of the external field 
as well as its properties in the frequency  domain, the 
forward operator and the inversion are both established 
in the windowed  Fourier domain, where each window 
is considered a realization of the source. For a given 
frequency ω and a time window τ , the magnetic field is 
related to the source coefficients via

(27)B(r,ω) =
∑

n,m

Bm
n (r,ω; σ) εmn (ω),

(28)

�ext(θ ,φ) = −
a

µ0

∑

n,m

2n + 1

n + 1

(
b

a

)n

Ym
n (θ ,φ) εmn (ω).

(29)dmod
τ ,ω =



B(r1, τ ,ω)

...
B(rNr , τ ,ω)


 =



B0
1(r1,ω; σ) · · · BN

N (r1,ω; σ)
...

. . .
...

B0
1(rNr ,ω; σ) · · · BN

N (rNr ,ω; σ)







ε01(τ ,ω)
...

εNN (τ ,ω)


 = Bτ ,ω(m) cτ ,ω,

where d denotes the data vector, c denotes the vector of 
external spherical harmonic coefficients, and their sub-
scripts τ and ω indicate the time window and frequency, 
respectively. As a common practice, we always inverted 
for logarithmic electrical conductivity directly in this 
study, in which case m = log(σ ) denotes the logarithmic 
conductivity (in S/m) of the subsurface. By concatenat-
ing time windows and periods, the forward operator with 
respect to the complete set of observations can be recast 
to the algebraic form given by Eq. 6.

Data
Our original dataset consists of hourly mean observa-
tions of the magnetic field at 163 observatories shown 
in Fig. 1. Both synthetic and real data experiments were 
carried out based on these observations. Synthetic data 
were generated using a realistic external field, and a two-
layer mantle electrical conductivity model, following the 
procedures outlined below. We took observatory mag-
netic field hourly means for years 2014–2018 and sub-
tracted the core, crust, and ionospheric contributions as 
given by the Comprehensive Inversion within the ESA 
Swarm data processing chain (Olsen et  al. 2013). Then, 
hourly time series of the external and internal coefficients 
up to degree and order three were estimated using SHA 
and robust regression. Only mid-latitude observatories 
(observatories with geomagnetic latitudes from 5°   to 
56°  north and south) were used in the process. The pur-
pose of this step is to obtain time  series of the external 
field that are representative of the real large-scale mag-
netospheric/ionospheric currents in terms of spatial and 
temporal characteristics. Using the estimated external 
field coefficients and a pre-defined 1-D Earth electrical 
conductivity model, synthetic magnetic field time  series 
at real observatory locations were obtained using Eq. 26. 
In this synthetic test, we set up a simple but realistic two-
layer mantle conductivity model, with an upper mantle 
(surface to 660km depth) electrical conductivity of 0.01 
S/m, and a lower mantle (660km to 2900km depth) elec-
trical conductivity of 1.0 S/m. Finally, we contaminated 
the synthetic time  series with a realization of an inde-
pendent and identically distributed Gaussian white noise 
with a standard deviation of 1nT.
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Since our implementations of the VP methods and the 
alternating approach are posed in the frequency domain, 
the data vector d is prepared by transforming the 
time series of magnetic field observations using the win-
dowed spectral transform with tapering, which is defined 
in discrete form as

where tn marks time points within a time window, Nτ is 
the number of points within a time window τ , and wn is a 
weighting coefficient associated with the nth point for a 
tapering window function. Choice of normalization does 
not affect the inversion scheme, but adopting this specific 
convention preserves the amplitude during the transform 
(i.e., a monochromatic oscillating field of period T and 
amplitude A will be transformed to a peak of amplitude 
A at frequency 1/T), yielding physical meaning to the 
recovered inducing field.

Finally, we comment on the uncertainty of the data. 
Recall that the data misfit in Eq. 9 is normalized by the 
standard deviation. Therefore, the uncertainty of the 
data in the Fourier domain affects weighting and alters 
the topography of the objective function. We identify 
two contributions of the uncertainty of the windowed 
spectrum. First, since measurements are made in the 
time  domain, the noise in the time  domain propagates 
to the Fourier domain, which we term the propagated 
spectral uncertainty, denoted as sprop . For an arbitrary 
time series with a Gaussian white noise of variance s20 
in time domain, the corresponding uncertainty in win-
dowed  Fourier  domain following transform defined in 
Eq. 30 is given by

Therefore, the propagated spectral uncertainty is not 
merely proportional to its temporal counterpart, but is 
also dependent on the length of the time window. The 
proof of this property is given in Appendix C. For this to 
hold, the noise is assumed to be independent identically 
distributed with zero mean. The noise we add to the syn-
thetic data indeed satisfies this assumption, and thus, our 
estimation of this uncertainty is optimal.

(30)

X(τ ,ω) = Fτ ,ω[x(t)] =
1∑
n wn

Nτ∑

n=1

wnx(tn)e
−iωtn ,

(31)

s2prop(τ ,ω) = Var[X(τ ,ω)] = E

[
|X(τ ,ω)|2

]

− |E[X(τ ,ω)]|2 =

∑
n w

2
n(∑

n wn

)2 s
2
0.

In addition to the propagated spectral uncertainty, 
modelling in the frequency  domain in short time win-
dows and using tapering functions introduce extra errors 
to the problem. While such segmentation and window-
ing enhance robustness of frequency-domain inversion, 
it also introduces spectral leakage (see Appendix D for 
details). This error varies depending on the shape of the 
spectrum in the vicinity of the frequency, but we assume 
that it has similar magnitudes for different frequencies. 
Denoting this error as sspec and assuming sspec and sprop 
are independent, we can write

The windowed transformed data are then inversely 
weighted by the complete variance s2(τ ,ω) . In cases 
where sprop is very small (e.g., at long periods), sspec 
serves as the baseline (or error floor) for the overall 
uncertainty. We note that the choice of sspec is generally 
problem dependent. By comparing the windowed spec-
trum of a time series modelled with a long time window 
and the spectrum modelled window-wise, we chose 
sspec ≈ 0.05 nT for our experiments. This would have only 
marginal effect for real data because the noise s0 is large, 
but it can play a role for our synthetic experiments with 
the idealized white noise model.

(32)s2(τ ,ω) = s2prop(τ ,ω) + s2spec.

Fig. 2  Schematic regime plot of different inversion methods of 
VP and alternating approaches. These inversion schemes can be 
categorized by how strong the linear constraint is enforced, and how 
often the linear model is updated. Note VP-RW3 can be interpreted 
as an alternating approach which updates the linear model at each 
iteration
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Results
We conducted both synthetic and real data experiments. 
In both cases, we implemented a conventional approach 
for field separation and subsurface conductivity inver-
sion. The conventional inversion scheme includes sepa-
rating the internal and external fields using the Gauss 
method, estimating an EM transfer function, and then 
inverting the transfer function for subsurface electrical 
conductivity. For consistency, the same transfer function 
as is used in our forward operator, i.e., the Q-response, 

is chosen, and the nonlinear optimization problem for a 
subsurface conductivity distribution is stated as

where Qobs
n  gives the Q response estimated from εmn  and 

ιmn  , and dQn is the formal uncertainty. This method will 
be referred to as Q-response inversion. The model vector 
m is again the logarithmic electrical conductivity, same 

(33)

min
m

1

2

N∑

n=1

K∑

k=1

∣∣∣∣
Qobs
n (ωk) − Qmod

n (ωk ;m)

dQn(ωk)

∣∣∣∣
2

+
�

2
�Ŵm�22,

Fig. 3  RMS misfits by periods for full-VP (left), alt-Fibonacci (middle), and alt-∞ (right). The RMS misfits are color-coded by the iteration number in 
each plot

Fig. 4  Electrical conductivity profiles recovered for representative inversion schemes. The results come from Q-response inversion (left), full-VP 
(middle), and alternating approach using the Fibonacci linear update rule (right). In each case, the final inversion result (blue) is plotted together 
with the initial model (red) and the ground truth (light blue). The intermediate models along the iterations are also plotted in gray scale, 
color-coded by iteration numbers. Light gray corresponds to early iterations, while dark gray corresponds to later iterations
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as our forward operator in VP/alternating approach. 
The Tikhonov matrix Ŵ in Eqs.  10 and 33 is equivalent. 
A solution that minimizes the objective function (33) is 
sought using a Newton-based algorithm. The regulariza-
tion strength as a hyperparameter in inversion is iden-
tified using the L-curve analysis (Hansen and O’Leary 
1993).

We note that the absolute values of the data misfit for 
Q-response inversion and VP/alternating methods are 
not directly comparable. Even when the data misfit is 
normalized by the number of data samples, Q-response 
inversion and VP/alternating methods perform inversion 
with respect to different data. The latter directly works 
on the magnetic field data in the frequency domain, the 
uncertainties of which are propagated from the time-
domain estimates, while the former is conducted on esti-
mates of transfer functions and their formal uncertainties 
obtained from regression in spectral domain. We there-
fore do not intend to directly compare the magnitude of 
the objective function between Gauss and VP/alternating 
methods. It naturally follows that the respective suitable 
regularization strengths are also not directly compara-
ble in magnitude, as they would vary between these two 
types of scheme. It is, however, worth mentioning that 
VP and alternating methods, regardless of their variants, 
share the same data misfit evaluation, and are thus com-
parable in terms of data misfit as well as regularization 
strengths. We stick to the standard procedure of choos-
ing regularization for each scheme, but such choices may 
be general across different variants of VP and alternat-
ing approaches, as is indeed the case in the experiments 
shown later.

Synthetic experiment
Since both Q-response inversion and the VP/alternating 
approaches are done in the frequency domain, we choose 
the same discrete frequencies for all inversions. For the 
synthetic experiment, we chose 15 periods log-spaced 
between 1 and 100 days. The inducing field to be deter-
mined is parameterized using SH functions up to SH 
degree and order 3, and the electrical conductivity model 
is parameterized as a 15-layer 1-D profile. Although the 
coherence of the Q-responses obtained by Gauss method 
is adequately high for all modes and frequencies due 
to the ideal synthetic data, we chose to invert only the 
degree one response Q1 , as is done in practice. VP/alter-
nating approaches, on the other hand, automatically try 
to fit all modes and frequencies simultaneously.

Fig. 5  Recovered inducing field coefficient ε1
2
 in the frequency domain using full-VP. Three frequency bands (left: 1 day; middle: 10 days; right: 100 

days) are shown. The windowed spectra are split into real parts (upper panel) and imaginary parts (lower panel). In each subplot, the inversion 
results (cyan for real parts and light pink for imaginary parts) are shown together with the windowed spectra of the ground truth (thick blue and red 
lines)

Fig. 6  Evolution of root-mean-square misfit and model roughness. 
The evolution of normalized RMS misfit (right axis) is plotted in blue, 
and the evolution of model roughness (left axis) is plotted in red. 
Roughness is evaluated by calculating ‖Ŵm‖2

2
 . From light to dark 

colors, the parameter evolution curves are plotted for Q-response 
inversion, full-VP, alt-Fibonacci scheme, and alt-∞ scheme, 
respectively
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For VP methods, all three variants were tested on the 
synthetic dataset. For alternating approaches, we tested 
four different linear update rules: (1) the external field is 
estimated once at the beginning using some initial con-
ductivity model, and never updated afterwards; (2) the 
external field is re-estimated every ten iterations; (3) the 
external field is re-estimated every five iterations, and 
(4) the external field is updated following the Fibonacci 
sequence (that is, at iterations 1, 2, 3, 5, 8,...). The alter-
nating methods with these four linear update rules will 
be abbreviated as alt-∞ , alt-10, alt-5, and alt-Fibonacci, 

respectively. These variants of VP and alternating 
approaches can be uniformly described by the two con-
trolling parameters, i.e., the incorporation of linear con-
straints, which varies for different variants of VP, and 
the frequency of linear update, which varies for different 
variants of alternating approaches. The relation of these 
inversion schemes is schematically summarized in Fig. 2.

Most of the synthetic data inversions produce satisfac-
tory results of the conductivity profile within ∼ 20 itera-
tions. In particular, we first examine two representative 
cases, namely full-VP and alt-Fibonacci, in addition to the 

Fig. 7  Frequency-wise relative errors between the estimated and the true external SH coefficients for different modes. The columns show the 
RMS errors using full-VP (left), alt-Fibonacci (middle), and alt-∞ (right), respectively. Different rows are for different SH modes, i.e., (1, 0) (top), (2, 1) 
(middle), and (2, 2) (bottom). In each plot, the RMS errors are color-coded by the iteration number
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reference Q-response inversion. These include the best-
performing schemes within VP variants and alternating 
approach variants, as will become clear in the results 
and discussions that follow. In full-VP and alt-Fibonacci 
schemes, the converged models yield normalized RMS 
values ( χrms ) of ≈ 0.9 , indicating successful data fitting. 
In addition, the RMS misfits are roughly at a uniform 
level across the considered range of frequencies (Fig. 3). 
The recovered mantle conductivity profiles are shown in 
Fig. 4. The conductive lower mantle is recovered almost 

perfectly, especially in the case of full-VP and alt-Fibo-
nacci, while the inverted upper mantle conductivity fol-
lows a gradual decrease from 600km depth upwards, and, 
in these cases, experience a mild reverse trend at lith-
ospheric depths, mostly appearing as a result of regulari-
zation and low sensitivity to these depths.

Variable projection inversions as well as alternat-
ing approaches simultaneously produce an estimate 
of the linear model, i.e., the inducing field in this con-
text, along with an estimate of the mantle electrical 

Fig. 8  Electrical conductivity profile recovery for variants of VP. The results come from full-VP method (left), VP-RW2 (middle), and VP-RW3 
approximation schemes (right). In addition to the ground truth (light blue), the initial model (red), and the final inversion result (blue), the 
intermediate models along the iterations are also plotted in gray scale, color-coded by iteration numbers. Light gray corresponds to early iterations, 
while dark gray corresponds to later iterations

Fig. 9  Relative error between the estimated and the true ε1
2
(ω) coefficients for different variants of the VP method at different inversion iterations 

(color-coded). Shown are full-VP (left), VP-RW2 (middle), and VP-RW3 (right)
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conductivity. Since the inversions are carried out in the 
frequency  domain, the linear model is estimated in the 
form of windowed spectrum εmn (τ ,ω) . In the synthetic 
test, the ground truth external coefficients are known, 
and hence can be used to validate the windowed spec-
trum of the inducing field SH coefficients inverted using 
these approaches. A comparison for three period bands 
of ε12(τ ,ωi) with ωi = 2π/Ti and Ti = 1, 10 and 100 days 
obtained using full-VP is presented in Fig. 5. From visual 
inspection, our synthetic tests for VP yield almost per-
fect recovery of the windowed spectrum of the external 

field. This is not limited to frequency bands or spherical 
harmonic components with strong external signals (e.g., 
the daily band ∼ 1 day for ε12 , Fig. 5 left panel), but also 
applies to less energetic frequency bands and SH modes 
(e.g., Fig. 5 right panel). Similar results are observed for 
alternating scheme with the Fibonacci linear update rule 
(Fig. 22).

We have hence demonstrated that with appropri-
ate hyperparameters and specific variants, all types of 
inversion methods are able to yield satisfactory solu-
tion on the synthetic dataset. Furthermore, we observe 

Fig. 10  Electrical conductivity models recovered using variants of alternating approaches. The variants shown update inducing source coefficients 
every five (left) or ten (middle) iterations, or never update the inducing source after the initial estimation (right). The color coding of the lines and 
legends is the same as in Fig. 8

Fig. 11  Relative error between the estimated and the true coefficient ε1
2
(ω) for different variants of the alternating approach. The variants shown 

are alt-5, alt-10, and alt-∞ , which encode the frequency of the linear model update
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similar convergence behavior across these representative 
inversion schemes (Fig.  6). All of these inversion cases 
converged to the stable solution within 20 iterations. 
We stress that, at least for this experiment, the full-VP 
scheme and alt-Fibonacci scheme exhibit convergence 
rates that are at least as good as or slightly outperform 
the Q-response inversion, even though the SNLS prob-
lem has seemingly more ”work” to do, because it also 
estimates the source structure for all 15 SH coefficients at 
all frequencies.

In all cases, we observe an initial upsurge in the model 
roughness, followed by a gradual decrease, accompanied 
by an almost monotonic decrease of the data misfit. This 
behavior is expected as the inversions start from a uni-
form model with zero roughness, thus they first attempt 
to fit the data at the cost of expanding model complexity, 
and then stabilize by settling for a smoother model after 
the data misfit reaches a certain level.

Since the inducing field model is known for the syn-
thetic study, we also examine how the inducing field esti-
mates converge towards the ground truth solution for VP 
and alternating methods. We introduce the frequency-
wise relative error for the SH coefficients, defined as

The evolutions of ǫSHnm(ω) as a function of iterations for 
full-VP and alt-Fibonacci are shown in Fig.  7. For VP, 
the inducing field monotonically approaches the ground 
truth except for marginal oscillations around the con-
verged solution, and eventually converges at iteration 6, 
hence slightly earlier than the conductivity model (Fig. 4). 
For the alt-Fibonacci scheme, the inducing field does 
not converge until the 13th iteration. Since alternating 
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approaches do not update the inducing currents at each 
iteration, only five linear projections have been made by 
iteration 13, following the Fibonacci linear update rule. 
Slow convergence of the inducing field solution is espe-
cially observed at long periods when using the alt-Fibo-
nacci scheme. For instance, the estimated inducing field 
at iteration 8 has the same level of relative error with the 
field at iteration 5 for the 100-day period band (Fig.  7, 
middle column). This shows the importance of main-
taining consistency between the source and conductivity 
models, which is most consistently done in the full-VP 
method.

Our tests using different variants of VP show that all 
variants of VP converge to almost the exact same electri-
cal conductivity model that is satisfactorily close to the 
ground truth for the synthetic data (Fig. 8). However, we 
do observe that VP-RW3 exhibits slower convergence 
for both linear (Fig. 9) and nonlinear parts of the model 
space (Fig. 8). Most period bands of the external field take 
8–10 iterations to converge. Deterioration of the solution, 
i.e., increased error in the external field at later iterations, 
is also observed for VP-RW3 for periods longer than 106 
s, while such increase in error is absent in full-VP and 
VP-RW2. As is shown in Eqs. 18-22, implicit feedback of 
the inducing field estimate is utilized by both full-VP and 
VP-RW2, but absent in VP-RW3. The observed slower 
convergence as well as deterioration is hence the result 
of omitting the relevant terms in VP-RW3. We antici-
pate that the performance of VP-RW3 (and alternating 
approaches) will further deteriorate for more complex 
and high-dimensional models.

The conductivity model recovery for different variants 
of the alternating approach is shown in Fig.  10. As was 
shown above, updating the inducing field coefficients 

Fig. 12  Evolution of RMS misfit and model roughness for alternating 
approaches. The displayed quantities and the calculation of 
roughness are the same as in Fig. 6. The curves are color-coded 
by inversion schemes, the lightest ones to the darkest ones 
corresponding to alt-Fibonacci, alt-5, alt-10, and alt-∞ , respectively Fig. 13  C-responses and their corresponding coherence. The top 

panel shows C1-response estimated from (1, 0) spherical harmonic 
coefficients with their uncertainties, and the lower panel shows the 
corresponding squared coherence
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at iterations using a Fibonacci sequence still allows the 
inversion to reach a solution that is fairly close to the 
VP solution (Fig.  4) within 20 nonlinear iterations with 
only six linear updates, but as soon as the frequency of 
linear updates is reduced to every five iterations, consid-
erable deterioration of the electrical conductivity recov-
ery occurs, particularly in the lower mantle (Fig. 10). Not 
only is the inversion taking longer to reach a stationary 
point, but the scheme fails to locate the best-fitting non-
linear solution within 20 iterations as well, proving to be 
at best only half as efficient as the VP or alt-Fibonacci.

Interestingly, despite the deteriorated recovery of the 
mantle conductivity, alt-5 produces an estimate of the 
external field that is almost the same in accuracy to VP 
or alt-Fibonacci scheme (Fig. 11), with slightly increased 
error only in some long period bands. However, as seen 
in Fig. 12, the misfits and roughness values for alt-5 have 
already stagnated at the final stage, and the convergence 
criterion is satisfied at iteration 18, indicating that the 
optimization has already converged. Therefore, the misfit 
between the ground truth and the inverted conductivity 
models can only be attributed to the marginal difference 
in external field, and the final inverted conductivity pro-
file should be considered the optimizer of the manifold 
constrained by the slightly incorrect external field. Alt-5 
provides such a clear example where a relatively small 
error in the inducing source field leads to significant arti-
facts in conductivity model. When the number of lin-
ear updates are cut even further, both the external field 

estimation and the mantle conductivity recovery deteri-
orate further, as in the case of alt-10 and alt-∞ (Figs. 10 
and 11).

It is worth mentioning that we observe two types of 
”stagnation” behavior in our inversions. In one scenario, 
the model estimates along with the diagnostic parame-
ters, such as χrms and roughness, either fulfill the conver-
gence criterion and terminate the inversion, or oscillate 
mildly in the vicinity of a stationary value. The model is 
considered converged in this scenario, whether to the 
vicinity of the ground truth (as in VP variants and alt-
Fibonacci scheme) or to a local optimum (undoubtedly 
the case in alt-5) of the manifold in the joint model space. 
In another scenario (observed in the case of alt-∞ ), the 
objective is not improved for more than eight itera-
tions. This behavior indicates that the trust-region New-
ton method we employed for optimization repeatedly 
rejected all update proposals, likely because of a poor 
local quadratic approximation and severe ill conditioning 
far from the optimum.

Real data inversion
We applied the VP method to the real ground geomag-
netic observatory data measured between years 2014–
2018 to simultaneously reconstruct mantle conductivity 
and external field spectrum. The data come from 120 
geomagnetic observatories within the mid-low geomag-
netic latitude range of 5◦-56◦ . Several amendments were 

Fig. 14  Mantle conductivity obtained from ground magnetic field observations from years 2014–2018, using the variable projection inversion. The 
legends and the color coding of the intermediate inversion steps are the same as in Fig. 8. A thin surface layer with radial conductance of 6600S was 
fixed throughout the inversion
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introduced to the workflow used in numerical experi-
ments to adjust the method to real-Earth sounding. 
First, a new frequency band (12 hours) is added to the 
15 frequency bands spanning 2 decades. This is used for 
improving constraints to the asthenospheric conductiv-
ity. Second, we expanded the parameterization of the 
mantle conductivity to a 45-layer 1-D profile. Following 
Grayver et al. (2017), we used a fixed surface layer with 
the conductance of 6600  S that represents an average 
ocean-sediments conductance over the globe.

First, we obtained an estimate of the Q-responses by 
applying conventional Gauss method and robust spectral 
stacking. The responses can be converted to and visu-
alized as a global C-response (e.g., Olsen 1999), via the 
equation

Having the dimension of length, the real part of the 
C-response corresponds to the central depth of induced 
currents, and is hence indicative of the penetration depth 
of the EM field at a certain frequency (Weidelt 1972). The 
available data and frequency bands used in this study 
are most sensitive to a depth range of 500–1500 km, as 
can be seen from the C1 responses (Fig.  13). Based on 
squared coherences, we use the following Q-responses as 
the input data for subsequent conductivity inversion: Q1 
estimated from the SH coefficient (1, 0) at periods longer 
than 1 day, Q2 estimated from the SH coefficient (2, 1) at 
diurnal band (24 hours), and Q3 estimated from the SH 
coefficient (3, 2) at semi-diurnal band (12 h). Variations 
in the daily band are mostly driven by ionospheric cur-
rent systems.

For VP, we took only observatories with at least 99% of 
valid data in each time window and linearly interpolated 
the missing observations before conducting the win-
dowed spectral transform (Eq. 30). For real time series of 
the magnetic field, no information on either spatio-tem-
poral properties or magnitude of the noise is available. It 
is apparent that when assuming a Gaussian white noise, 
the assumed noise magnitude serves as a mere normal-
izing factor for the data misfit (Eq.  31), but would not 
alter the topography of the objective function. It then 
follows that the properties for inversions (convergence, 
results, etc.) are preserved except for corresponding 

(35)Cn(ω) =
a

n + 1

1 − n+1
n Qn(ω)

1 + Qn(ω)
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Fig. 15  Mantle conductivity profiles from this study and Grayver 
et al. (2017). The inversions using all three SH degrees are shown in 
blue and red lines, whereas the inversions using only the first zonal 
harmonic are shown in cyan and magenta lines

Fig. 16  Recovered inducing field coefficient ε1
2
 in the frequency domain. The frequency bands are the same as Fig. 5. In each subplot, we show the 

VP inversion results (thin cyan and pink lines) on top of the windowed spectra of the external field obtained by Gauss method (thick blue and red 
lines)
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normalization factors for regularization terms and uncer-
tainties. Meanwhile, the spectral and temporal char-
acteristics of the unknown noise pose a much greater 
threat. Without the Gaussian white noise assumption, 
our estimation of the Fourier-domain uncertainty would 
be invalidated. Nevertheless, we proceed by assuming a 
Gaussian white noise with the standard deviation of 1nT 
for real observations.

A series of VP inversions were conducted with varying 
regularization strengths, and the desired hyperparameter 
was chosen based on the L-curve (Fig.  24). The inver-
sion results of the mantle conductivity profile using VP 

as well as conventional Q-response inversion are shown 
in Fig.  14. Both conductivity models show a resistive 
upper mantle with a conductivity monotonically increas-
ing from 10−3S/m at lithospheric depths to 1S/m at the 
bottom of the MTZ. Due to the limited sensitivity of our 
data to the upper mantle (Fig. 13), however, the magni-
tude and the detailed shape of conductivity in this region 
are less reliable. The mantle conductivity at 750km depth 
just beneath the MTZ is well constrained by our data at 
2 to 3S/m, characterized by a conductive peak, a feature 
that appears quite robust when using weaker regulariza-
tions. Beneath this conductive layer, the lower mantle 
is characterized by a resistive kink, followed by mildly 
increasing conductivity from ∼ 1S/m at 1200 km depth 
to 2S/m at 1600.

Despite resemblance between the conductivity profiles 
produced using Q-response inversion and VP inversion, 
these models show considerable discrepancies compared 
to previous 1-D conductivity models, e.g., the 1-D profile 
inverted from C1 in Grayver et al. (2017), shown in Fig. 15. 
Compared to the previous models, the conductive peak 
and the resistive kink in our inverted models are much 
more pronounced, and the depth within the MTZ in our 
model is considerably more resistive. These discrepancies 
can be reconciled, however, if we used only the (1, 0) SH 
mode in the inversion. Instead of combining data with 
different SH degrees (i.e., n ≤ 3 ), by inverting only the Q1 
responses estimated from (1, 0), or by parameterizing the 
source structure using only the first zonal harmonic (con-
trolled by the magnetospheric ring current) in the VP 
inversion, the obtained conductivity profiles match well 
with the previous profiles within the depth range where 

Fig. 17  Relative inducing field difference and coherence of the 
Q-response. The top panel shows the relative difference between ε1

2
 

estimates from Gauss method and VP, and the bottom panel shows 
the coherence of Q2 estimated from Gauss-method-derived ε1

2
 and ι1

2

Fig. 18  Condition number of the linear system for field estimation in Gauss method (left) and VP (middle), with varying truncation SH degree for 
external and internal fields. The ratio between the two condition numbers (condition number of Gauss method divided by that of VP) is shown on 
the right
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our data have adequate sensitivity (Fig. 15). It is not the 
focus of this study to discuss the differences between 
models in Figs. 14 and 15. Whether these differences are 
dictated by source effects or induced by subsurface dif-
ferences that become more pronounced in other than P0

1 
terms, they imply that the adopted parameterization of 
the inducing field has a strong impact on the retrieved 
conductivity model.

As in the synthetic tests, we obtained the windowed 
spectra of the external field SH coefficients up to degree 
and order 3 from the VP method. The estimated exter-
nal field is close to that obtained by the Gauss method 
(Fig.  16), but the misfit between the two is generally 
dependent on energy of the mode. For energetic spatial 
modes, e.g., ε01 at period bands longer than 1 day (Fig. 23), 
ε12 at 1 day period (Fig.  16 left column), the results are 
very close. Modes with low power also show correlated 
trends, but estimated magnitudes disagree. Similar to 
the relative error defined in Eq. 34, a relative measure of 
the discrepancy of the estimated SH coefficients can be 
introduced as

We observe that the relative difference between the 
inducing fields derived from the Gauss and VP methods 
is strongly correlated with coherence in the correspond-
ing Q-response estimation. For a spherical harmonic 
mode, frequency bands with higher Q-response coher-
ence are associated with lower relative differences in the 
inducing field estimates from different methods, as is 
clearly shown in the case of mode (2, 1) (Fig. 17). The cor-
relation between the transfer function coherence and the 
inducing source consistency does not come as a surprise, 
but is a natural consequence of the physical connection 
between the inducing field and its induced counterpart. 
The coherence in transfer function estimation is used to 
describe how much of the induced field can be causally 
explained by the transfer function, which in our case is 
the Q-response, whereas such physical link is explicitly 
incorporated in VP. Therefore, in frequency bands and 
SH modes where such physical connection is appropriate 
for explaining the data (i.e., high coherence), the induc-
ing source estimate in the Gauss method should be more 
consistent with that obtained in VP.

Discussion
Separability of inducing source modes
We have emphasized that VP/alternating approaches 
are not limited to potential field and can accommodate 
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diverse measurements and sources in contrast to inver-
sions based on TFs, such as the Q-response, estimated 
based on SH coefficients obtained from the Gauss 
method. In addition, VP and alternating approaches also 
benefit from more reliable source estimate when com-
pared to the Gauss method. This is because the Gauss 
method needs to estimate both internal and external 
coefficients together, while the linear operator in VP or 
alternating approaches involves only variables for the 
inducing source.

To illustrate the effect, we explored the dependency 
of the condition number of linear regression operators 
upon different combinations of internal and external 
field parameterizations. High condition number implies 
nearly co-linear columns, which leads to poorly separa-
ble parameters and catastrophic amplification of data 
errors (Heath 2018). In the Gauss method, the internal 
and external fields are co-estimated; different trunca-
tion degrees of internal field give rise to linear systems 
of different dimensions. In VP/alternating approaches, 
the internal field is modelled. Varying the maximum 
degree of modelled internal field changes the columns in 
the matrix, but the column dimension of the linear sys-
tem which corresponds to the external field parameters 
remains the same. We constructed linear systems for 
field estimation for both Gauss method and VP, assum-
ing a real observatory layout with 68 observatory loca-
tions (red circles in Fig.  1), a configuration taken from 
the distribution of available observatories in the dataset 
on Nov 29, 2019. The result is shown in Fig.  18. While 
the condition number for the Gauss method increases 
substantially with both internal and external SH degrees, 
the condition number for VP depends mostly only on the 
maximum external SH degree, but hardly changes over 
one order of magnitude for different degrees of modelled 
internal field. As a result, source determination within 
the VP method remains well conditioned (e.g., condi-
tion number ≈ 20 for maximum external SH degree of 5), 
whereas the corresponding matrix for the Gauss method 
may already be very ill-conditioned (condition number 
> 103 for the same external field parameterization). This 
experiment reveals severe limitations of the conventional 
Gauss method for 3-D scenarios, where the intention is 
to go for higher degrees in internal field parameterization 
to capture lateral conductivity variations at desired length 
scales. In these settings, VP and alternating approaches 
offer a definite advantage.

Effect of linear update and derivative approximation
Both VP and alternating approaches provide efficient 
means to find a suitable solution in the joint model 
space by introducing point-dependent constraints. 
Whereas variable projection variants re-estimate the 
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local ”optimal” constraint at each iteration, alternating 
approaches allow a user to delay the next re-projection 
of the linear model and re-estimation of the constraint, 
implicitly assuming that the constraint remains valid 
at each subsequent iteration that reuses the initial pro-
jection. Although this saves resources and time, we 
observe that such assumption may not be valid and can 
potentially cause considerable deterioration of the solu-
tion when utilizing the alternating concept. Excessive 

iterations using a fixed external field model push a con-
ductivity model away from an optimal solution, which in 
turn projects the inaccuracy back to the external field at 
the next iteration (Fig. 7, Alt. - Fibonacci). In real settings, 
without information about the ground truth, detect-
ing such behavior is practically impossible. Therefore, as 
appealing as the alternating approach might be due to its 
simple nature, insufficiently frequent updates of the lin-
ear model create a risk of obtaining biased solutions, as 
was demonstrated in this study. On the other hand, we 
found that more elaborate update rules, such as alt-Fibo-
nacci, succeed in locating the optimal solution. This pro-
cess is facilitated by more frequent linear updates at early 
stages of the inversion. Therefore, alternating approaches 
should be used with care; in particular, for a given source 
model, the nonlinear inversion on the conductivity 
model should not be run until it stagnates, by which time 
the conductivity model (and with it, the estimate of the 
external field in the next stage) is probably already biased. 
In contrast, it is beneficial to alternate between conduc-
tivity inversion and inducing field estimation as often as 
possible initially, with more rare updates to be permitted 
at later stages.

For our rather simple synthetic tests, we observe no 
significant difference between the models obtained with 
different VP variants. However, we observe a slower 
convergence as well as deterioration of the models in 
intermediate iterations for the VP-RW3 variant (Fig.  9). 

Fig. 19  Estimated windowed spectrum of the inducing field coefficient ε1
3
 . Frequency bands are the same as in Fig. 5. For each frequency band, the 

inducing field coefficients are shown for the VP inversion result (cyan), estimation using a uniform mantle conductivity of 0.1S/m (magenta) and a 
simplistic perfect insulator-conductor bi-layer model (orange). The estimations are produced using the synthetic data, and are plotted on top of the 
the ground truth (black)

Fig. 20  Relative errors of the external field coefficients ε1
3
 with 

different conductivity models. Errors are shown for the VP inversion 
result (blue), estimation using a uniform mantle conductivity of 
0.1S/m (red), and a simplistic perfect insulator–conductor bi-layer 
model (orange)
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Different levels of approximation of the Fréchet deriva-
tives seem to work almost equally well for the synthetic 
experiment, and in practice, it might be beneficial to 
adopt either VP-RW2 or VP-RW3 variants for the sake 
of computational efficiency, especially when evaluation 
of DF is expensive (to be the case once full 3-D forward 
operator is required).

Interplay between conductivity model and external field
The external field model and the mantle conductivity 
model are mutually dependent in the optimization prob-
lem defined in Eq. 10. In particular, the mantle conduc-
tivity model is sensitive to perturbations in the external 
field, as was evident in our experiment where alternations 
between linear and nonlinear models are done at varied 
frequencies (alt-Fibonacci, alt-5, alt-10, and alt-∞ ). Note 
that the application of the VP method completely elimi-
nates this problem, and preserves consistency between 
the linear and nonlinear model unknowns. It does not 
mean that the VP is less ambiguous than the alternating 
approach, but it allows one to attain the best (in least-
squares sense) possible trade-off between source and 
conductivity models.

In turn, mantle conductivity has a non-negligible feed-
back on source reconstruction. To quantify and illus-
trate the effect, we compared the quality of inducing 
field reconstruction from synthetic data using simplistic 
subsurface conductivity models, such as a uniform man-
tle conductivity of 0.1S/m, which is used as the starting 
model for all our inversions, and a simplistic two-layer 
Earth model consisting of a 1200km-thick perfectly insu-
lating mantle and a perfectly conducting core, hereinafter 
referred to as the bi-layer model. For the perfect insula-
tor–conductor bi-layer model, the Q-response of degree 
n degenerates to a frequency-independent algebraic form

where z is the thickness of the overlying perfectly insulat-
ing layer. Due to its simplicity, the bi-layer model is often 
used in space weather and geomagnetic field modelling 
to get a first-order estimate of the induction effect.

Figure  19 shows estimates of the external field win-
dowed spectra obtained with different conductivity 
models. There are considerable discrepancies between 
the inducing field estimates and the ground truth field 
when using overly simplistic models. For instance, note 
the amplitude discrepancies of the field recovered using 
the bi-layer model, especially in short (e.g., 1 day) and 
long periods (e.g., 100 days). The discrepancies are also 
obvious from the relative field errors evaluated in ener-
gies (Fig. 20), calculated from Eq. 34. While the inversion 
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result from VP gives an external field ε13 that is 1% to 5% 
different from the ground truth in most frequency bands, 
the aforementioned simplistic models yield external fields 
that typically exhibit over 15% error. The initial uniform 
conductivity model, for instance, gives relative inducing 
field errors of 15% in short periods, which increases to 
values of 90% at periods of about 1 month. For the sim-
plistic two-layer model, the relative error of the external 
field increases from 20% in the diurnal band, to 45% in 
the period bands of 1–3 months. This large discrepancy 
is partially attributed to the low energies in these modes, 
but the patterns are the same in more energetic modes.

In short, source estimates calculated using overly sim-
plistic or wrong conductivity models are prone to addi-
tional errors (up to 90% in our experiment), even in the 
scenario where the response is given by a simple 1-D 
model. For a realistic 3-D earth, the conductivity model 
might have a more pronounced effect, especially in the 
vertical component of the magnetic field, when strong 
lateral variations are present (Grayver et al. 2021).

Conclusions
We addressed the problem of inverting for the inducing 
source and subsurface conductivity through the solution 
of a Separable Nonlinear Least-Squares (SNLS) problem. 
By exploiting the inherent property whereby observa-
tions depend on source coefficients linearly, whereas the 
dependency on the subsurface electrical conductivity is 
nonlinear, we proposed a novel inversion scheme that 
solves the underlying SNLS problem using the variable 
projection to determine source and conductivity struc-
tures simultaneously and retain consistency between 
them. We applied this method to both synthetic tests and 
real observations. Although our experiments and inver-
sions were limited to ground magnetic field observations 
and a rather simple 1-D conductivity model parameteri-
zation, the provided method derivations are general in 
both the observational data and the model parameteri-
zation aspects. Our derivations in the Methods section 
present a versatile generic framework for exploiting the 
VP and show how conventional inversion schemes that 
often already implement Jacobians for separate source 
and conductivity estimation can be reformulated into 
the SNLS form and solved using the VP or alternating 
approaches. To gain additional insight into the problem, 
we studied several variants of the VP and showed its rela-
tion to the full joint inversion as well alternating inver-
sion approaches.

Alternating approach provides a simple alternative to 
the VP method that can be used to solve SNLS. However, 
one important aspect that was not identified in the pre-
vious studies is that alternating approach with too rare 
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source model updates can result in deteriorated model 
estimates along iterations, which eventually undermines 
the convergence and model recovery. To avoid this, alter-
nating inversions need to perform frequent re-estimation 
of the inducing source, especially at early stages. We 
also observed a slower convergence of the alternating 
approaches compared to the full-VP method, although 
this can be compensated in practice by a lower computa-
tional cost per iteration.

We demonstrated that by introducing additional 
constraints to the joint model space, variable projec-
tion methods and alternating approaches are capable 
of recovering both external field and mantle conductiv-
ity simultaneously. They show comparable performance 
to the Gauss method and transfer function inversion on 
our (simple) test cases, where potential field assumption 
is applicable. However, unlike approaches that invoke 
the Gauss method, the SNLS problem solved by the VP 
method is not limited to the potential field scenarios. In 
particular, it can accommodate arbitrary source geom-
etries at arbitrary locations [e.g., current loops, dipoles, 
spherical elementary current systems (SECS)]; incorpo-
rate electric field data as well as both ground and satellite 
observations. Importantly, VP methods make the explicit 
use of the physical link (through Maxwell’s equations) 
between the source and conductivity, which ensures that 
consistency between both model spaces is preserved (at 
least to an extent for which data coverage and quality 
allow). This is in contrast to the conventional approaches 
where the source and conductivity are estimated inde-
pendently and it is often (implicitly) assumed in subse-
quent transfer function estimation and inversion that the 
external source estimate is ”noise-free”. Our synthetic 
tests showed that even small inconsistencies in a source 
model can lead to significant artifacts in subsurface con-
ductivity. We also showed that inadequate modelling of 
the induced field leads to a biased estimate of the external 
field structure.

Appendix A: VP with regularization on the linear 
part
For the sake of completeness, we present formulas for 
VP assuming a scenario where the source estimation 
requires regularization. This would be the case when a 

rich parameter space is needed to represent a source with 
a complex geometry. In accordance with the metric used 
in the rest of this paper, we only consider the ℓ2 regulari-
zation. Regularization on the linear parameters does not 
change the general pipeline of inversion, but would alter 
the form of the Fréchet derivatives, as will become clear 
in this following derivations.

We shall start from the general form of the joint opti-
mization problem (Eq.  10). To exploit the pre-existing 
derivations for VP without the regularization term on 
linear parameters, we introduce the augmented residual 
vector, defined as

where we use the notation Ŵ̃c = �
1/2

Ŵc . The explicit Jaco-
bians on the augmented residual vector are linked to the 
original Jacobians (Eq. 13) through

The augmented formulation allows us to rewrite Eq. 10 as

Since this is the same form as the VP formulation with 
�c = 0 , all previous formulas apply, except for replacing 
the original derivatives with the derivatives associated 
with the augmented residual. Furthermore, with Eqs. A.1 
and A.2, the estimated linear model, the Jacobian, and the 
gradient of the residual vector can be expressed explicitly 
in terms of the original quantities. The linear regression 
will be given by

where �c = �cŴ
H
c Ŵc is the regularization matrix, and 

J−�c
c = (JHc Jc + �c)

−1JHc  is the regularized version of the 
pseudoinverse. If JHc Jc is itself invertible, and �c = 0 , the 
matrix J−�c

c  defined in this manner would be exactly the 
Moore–Penrose pseudoinverse J†c . The complete Jacobian 
on the augmented residual vector is

(A.1)
r̃w =

[
dw − Fwc

−�
1/2

Ŵc

]
=

[
dw

0

]
−

[
Fw

�
1/2

Ŵc

]

c =

[
dw

0

]
−

[
Fw

Ŵ̃c

]
c = d̃w − F̃wc,

(A.2)

J̃c = −

[
Fw
Ŵ̃c

]
=

[
Jc

−Ŵ̃c

]
, J̃m =

[
−DFwc

0

]
=

[
DJcc
0

]
=

[
Jm
0

]
.

(A.3)min
m,c

1

2

∥∥∥d̃w − F̃w(m)c
∥∥∥
2

2
+

�

2
�Ŵm�22.

(A.4)
ĉ(m) = −J̃†cd̃w = −(JHc Jc + �c)

−1JHc dw = −J−�c
c dw ,

(A.5)

J̃ = Dr̃w(m, ĉ(m)) = J̃m − J̃c J̃
†
c J̃m − (̃J†c)

H (DJ̃c)
H r̃w

=

[
Jm
0

]
−

[
Jc

−Ŵ̃c

]
J−�c
c Jm −

[
Jc

−Ŵ̃c

]
(JHc Jc + �c)

−1(DJc)
H (I − JcJ

−�c
c )dw

=

[
Jm − JcJ

−�c
c Jm − (J−�c

c )H (DJc)
H (I − JcJ

−�c
c )dw

+ Ŵ̃cJ
−�c
c Jm + Ŵ̃c(J

H
c Jc + �c)

−1(DJc)
H (I − JcJ

−�c
c )dw

]
.
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The equation above gives the Jacobian for the full-VP 
scheme. Different variants of VP can now be achieved by 
choosing different approximations for J̃  . For VP-RW2, 
only the first two terms on the second line of Eq. A.5 is 
kept, while for VP-RW3, only the first one is retained. 
The gradient of the augmented data misfit is once again 
independent of the variants of VP, and takes the form

where φ̃(m) = 1
2

∥∥r̃w(m, ĉ(m))
∥∥2
2
 . For the optimization 

problem (Eq.  A.3), the update on the model parameter 
yielded by the Gauss–Newton algorithm satisfies

(A.6)
grad φ̃(m) = Dφ̃(m) = Re

[
J̃Hm r̃w

]
= Re

[
JHm(I − JcJ

−�c
c )dw

]
,

(A.7)

(
Re

[
J̃H J̃

]
+ �Ŵ

T
Ŵ

)
�m = −

(
Dφ̃ + �Ŵ

T
Ŵm

)
.

models m and c , respectively. In geomagnetic deep 
sounding problems the inducing field parameteriza-
tion usually occupies a much more higher dimensional 
subspace than the conductivity model, and the result-
ing system can be formidable to tackle. To compare the 
model update obtained using the joint model space opti-
mization, we use Schur complement to extract the model 
update on m , which is given by

Let us now consider the model update induced by VP 
and its variants. Following Eq.  19, the gradient retains 
its form regardless of the adopted approximation. Using 
the Gauss–Newton algorithm with Jacobians given by 
Eqs. 18, 21 and 22, the model updates are expressed as

We can see that the system induced by the joint model 
space optimization is very similar to the model update 
within the VP-RW2 method. In particular, express-
ing the current model in the joint model space as 
m̃ = [m, c] = [m,−J†cdw] , we can apply the orthogonal 
property of the residual vector with respect to Jc

The linear system for joint model space optimization 
(Eq. B.3) is then effectively identical to VP-RW2 (Eq. B.4). 
We therefore conclude that given the same conductivity 
model m and an optimized source model c = −J†c(m)dw , 
the conductivity model update proposed by VP-RW2 
is exactly the same as that proposed by the joint model 
space inversion. However, we note that the proposed lin-
ear update in joint model space inversion is given by

and does not yield optimized update on c . In contrast, the 
VP methods conduct regression at every iteration, which 
guarantees that the choice of c is optimal (in least-squares 
sense). Therefore, starting from the same m, c = −J†cdw 
combinations, VP-RW2 is guaranteed to propose a linear 
model that yields smaller data misfit compared to joint 
model space inversion, without resorting to a more com-
plex nonlinear model.

(B.3)

[
JHm

(
I − JcJ

†
c

)
Jm + �Ŵ

T
Ŵ

]
�m = −JHm

(
I − JcJ

†
c

)
rw − �Ŵ

T
Ŵm.

(B.4)

[
JHm

(
I − JcJ

†
c

)
Jm + rHw DJc

(
JHc Jc

)−1
(DJc)

H rw + �Ŵ
T
Ŵ

]
�m = −JHmrw − �Ŵ

T
Ŵm (full − VP),

[
JHm

(
I − JcJ

†
c

)
Jm + �Ŵ

T
Ŵ

]
�m = −JHmrw − �Ŵ

T
Ŵm (VP − RW2),

[
JHmJm + �Ŵ

T
Ŵ

]
�m = −JHmrw − �Ŵ

T
Ŵm (VP − RW3).

(B.5)JHc rw = 0 =⇒
(
I − JcJ

†
c

)
rw = rw .

(B.6)
[
JHc Jc

]
�c = −JHc (rw + Jm�m),

Appendix B: Linking VP and joint model space 
optimization
We have alluded to the the role of VP and alternating 
approaches as surrogate methods to the joint model 
space inversion. Here, we shall more explicitly state how 
they are related. We consider optimization of the same 
problem (Eq.  10), but in joint model space. The model 
vector is then represented as a concatenated vector 
m̃ = [mT, cT]T . The Jacobian and the Hessian of the mis-
fit (under the same Gauss–Newton algorithm) in the full 
model space are given by

where Jm and Jc are defined in Eq. 13. Adding the regu-
larization term yields the model update equation for the 
joint model space, given by the linear system

where m is the current estimate of the conductiv-
ity model. The linear system has a total dimension of 
Mm + Mc , where Mm and Mc are the dimension of the 

(B.1)

J�m = [Jm, Jc], H�m ≈ J
H
�mJ�m =



J
H
mJm J

H
mJc

J
H
c Jm J

H
c Jc


 ,

(B.2)



J
H
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T
Ŵ J

H
mJc

J
H
c Jm J

H
c Jc







�m

�c


 = −



J
H
mrw + �Ŵ

T
Ŵm

J
H
c rw


 ,
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As a simple illustration, we consider the wavelet fitting 
problem of a Ricker wavelet, which takes the form

where c controls the amplitude and enters the observa-
tion linearly, and α controls the width of the wavelet and 
enters the data nonlinearly. The wavelet fitting problem 
with squared misfit is an SNLS problem, and can be 
solved using the aforementioned methods. Different vari-
ants of VP were conducted, together with a joint model 
space inversion. The synthetic data were generated with 
α∗ = 1 amd c∗ = 1 , and all inversion schemes started 
from an initial guess α0 = 6 . For VP, no initial guess on 
the linear model is needed; for the joint model space 
inversion, we took the linear regression result ĉ0 at α0 = 6

.

The convergence of different inversion schemes in the 
2-D model space is shown in Fig. 21. In this toy example, 
all inversion schemes converged to the ground truth, but 
we observe the convergence slows down as we go from 
full-VP, VP-RW2 to VP-RW3. Comparison between the 

(B.7)φ(t) = −
d2

dt2

(
ce−αt2

)
= 2c(α − 2α2t2)e−αt2 ,

trajectories of VP-RW2 (blue line) and the joint model 
space inversion (red line) shows that within the first four 
iterations, the update on the nonlinear parameter α is 
very close, while the linear model c in the joint model 
space inversion slowly drifts away from the optimal lin-
ear least-squares solution, a phenomenon predicted by 
our derivations above. The non-optimal linear model for 
the joint model space inversion results in a detour of the 
trajectory after the fifth iteration, undermining the con-
vergence of the inversion scheme.

Appendix C: Variance propagation for windowed 
Fourier transform
Here, we present a derivation for Eq. 31. To this end, we 
consider a time  series x(tn) , which is a sum of a deter-
ministic signal x(0)(tn) , and a white noise ǫ(tn) ∼ N (0, s) . 
Thus, we have

We shall use X, X (0) and E to denote the windowed 
spectrum of x, x(0) and ǫ , respectively. Following the 
windowed Fourier transform (Eq.  30), we write the 
expectation of the windowed spectrum:

(C.1)
E[x(tn)] = x(0)(tn), s2 ≡ Var[x(tn)] = Var[ǫ(tn)].

(C.2)
E[X(τ ,ω)] = E

[
1∑
n wn

Nτ∑

n=1

wnx(tn)e
−iωtn

]
=

1∑
n wn

Nτ∑

n=1

wnE[x(tn)]e
−iωtn

=
1∑
n wn

Nτ∑

n=1

wnx
(0)(tn)e

−iωtn = X (0)(τ ,ω).

Fig. 21  Convergence of different inversion techniques on the wavelet fitting problem. Left: trajectories of inversion schemes in the parameter 
space for the wavelet fitting problem. The background color shows the data misfit in logarithmic scale. Right: data misfit as a function of iteration
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Therefore, the windowed spectrum X is the unbiased 
estimate of X (0) . On the other hand, the variance of the 
windowed spectrum X is determined by the variance of 
the windowed spectrum of the noise

The expectation of |E |2 is in turn given by

The last two steps use the fact that ǫ(tn) and ǫ(tm) are 
independent random variables with zero mean. This 
completes the proof for Eq.  31. For a boxcar window 
function, i.e. wn ≡ 1 , we have the following:

Appendix D: Modelling in windowed Fourier 
domain
In our synthetic test, we observe that although χrms ≈ 1 
can be obtained for the entire dataset, it is not the case 
with every frequency band (Fig.  3). This phenomenon 
should be attributed to the spectral leakage and, as a 
consequence, the inevitable imperfect nature of win-
dowed-Fourier-domain modelling. In particular, we 
consider two time series y(t) and x(t), which are related 
in the frequency domain via

where X, Y are the spectra of x and y, respectively, and 
H(ω) is the transfer function. In the general formulation 
of VP/alternating methods, X and Y correspond to the 
inducing current parameterization c and the data vector 

(C.3)
Var[X(τ ,ω)] = E

[
(X(τ ,ω) − E[X(τ ,ω)])2

]
= E

[
|E(τ ,ω)|2

]
.

(C.4)

E

�
|E(τ ,ω)|2

�
= E

�
E

∗(τ ,ω)E(τ ,ω)
�

= E


 1

(
�

n wn)2

Nτ�

n,m=1

wnwmǫ∗(tn)ǫ(tm)eiω(tn−tm)




=
1

(
�

n wn)2

Nτ�

n,m=1

wnwmE
�
ǫ∗(tn)ǫ(tm)

�
eiω(tn−tm)

=
1

(
�

n wn)2

Nτ�

n,m=1

wnwmVar[ǫ(tn)]δnme
iω(tn−tm) =

�
n w

2
n

(
�

n wn)2
Var[ǫ(t)].

(C.5)Var[X(τ ,ω)] =
Var[x(t)]

Nτ

.

(D.1)Y (ω) = H(ω)X(ω),

d , and H(ω) corresponds to the forward operator F(σ ) 
(Eq.  6); in the formulation of Q-response estimation, X 
and Y are εmn  and ιmn  , respectively, while H(ω) is nothing 
but the Qn(ω) response (Eq. 25). Without loss of gener-
ality, we limit ourselves to scalars X ,Y ,H ∈ C in this 
appendix. The goal here is to show that the windowed 
spectra of x and y, given by

with the transforms defined in Eq. 30 do not strictly sat-
isfy the same relation in the frequency domain. In other 
words, in general, we have

In this appendix, we strictly distinguish between the term 
windowed Fourier domain and the Fourier domain. The 
former is defined in Eq. 30, and the latter is defined in its 
continuous form in Eq. 2, and in its discrete form as the 
following convention for the discrete Fourier transform 
(DFT) and its inverse (iDFT):

where tk = k�t are the sampling time points, 
and ωq = q/N�t are the frequency points, 
k , q = 0, · · ·N − 1 . The windowed spectral transform of x 
in time window τ at frequency ω can be written as

(D.2)X(τ ,ω) = Fτ ,ω[x(t)], Y (τ ,ω) = Fτ ,ω[y(t)]

(D.3)Y (τ ,ω)  = H(ω)X(τ ,ω).

(D.4)

X(ωq) =
1

√
N

N−1∑

k=0

x(tk) e
−iωqtk ,

x(tk) =
1

√
N

N−1∑

q=0

X(ωq) e
iωqtk ,
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Here, kτ0 denotes the first time index of the time window 
τ , and Kτ denotes the total number of time points in the 
time window τ . Defining the normalized spectrum of the 
window function within the time window as

the windowed spectrum of x can be reiterated as

The trailing factor eiωqtkτ0 shifts the phases at respective 
frequencies to the beginning of the time window. The 
spectrum W̃  is normalized as such, so that W̃ (0) ≡ 1 . 
In the extreme case of infinite length time  series and 
time windows, we will have W̃ (ω) = δ(ω) , leading to 
X(τ ,ω) ∝ X(ω) . This is, however, never the case for 
finite length time  series and time windows, where the 
windowed spectrum at frequency ω always contains the 
spectrum at adjacent DFT frequencies, i.e., X(ωq) , a phe-
nomenon known as spectral leakage. Appropriate choices 
of the window function yield W̃  that can suppress the 
leakage, but this phenomenon still exists. The ”imper-
fection” of the forward modelling in windowed Fourier 
domain becomes clear when we also write the windowed 
spectrum of Y in a similar form

(D.5)

X(τ ,ω) =
1�
k wk

�

k∈{kτ }

wk−kτ0
x(tk) e

−iω(tk−tkτ0 )

=
1�
k wk

�

k∈{kτ }

wk−kτ0


 1

√
N

N−1�

q=0

X(ωq)e
iωqtk


e−iω(tk−tkτ0 )

=
1

√
N

N−1�

q=0

X(ωq)


 1�

k wk

�

k∈{kτ }

wk−kτ0
ei(ωq−ω)(tk−tkτ0 )


eiωqtkτ0

=
1

√
N

N−1�

q=0

X(ωq)


 1�

k wk

Kτ −1�

p=0

wp e
i(ωq−ω)tp


eiωqtkτ0 .

(D.6)W̃ (ω) =
1

∑Kτ −1
p=0 wp

Kτ −1∑

p=0

wp e
−iωtp ,

(D.7)

X(τ ,ω) =
1

√
N

N−1∑

q=0

X(ωq) W̃ (ω − ωq) e
iωqtkτ0 .

(D.8)

Y (τ ,ω) =
1

√
N

N−1∑

q=0

Y (ωq) W̃ (ω − ωq) e
iωqtkτ0

=
1

√
N

N−1∑

q=0

H(ωq)X(ωq) W̃ (ω − ωq) e
iωqtkτ0 .

From Eqs. D.7 and D.8, we see that the X(τ ,ω) is not sim-
ply linked to Y (τ ,ω) through a product with the transfer 
function, i.e., Eq. D.3. Only under one specific condition, 
i.e., H(ω) ≡ H0 , do the two quantities follow the same 
relation as their Fourier-domain counterparts, as

In other words, only when the transfer function has a 
flat spectrum (the impulse response is impulsive) is the 
modelling in windowed Fourier domain exactly the 
same as the modelling in the Fourier domain. Other-
wise, the forward modelling as Y (τ ,ω) = H(ω)X(τ ,ω) 
cannot explain the scattering of the data Y (τ ,ω) . This 
phenomenon should be perceived as an imperfection 
that affects both the TF estimation, as well as the VP/
alternating approaches when using the specific form 
of forward modelling (Eq.  29). In Q-response  estima-
tion, this indicates that even for perfect synthetic data, 
there will be residuals in the fitting of ι(τ ,ω) that can-
not be explained by Eq.  25. In our implementation of 
VP/alternating approaches combined with the forward 
operators (Eq.  29),  this imperfection is included in the 
uncertainty by the spectral transform error in Eq. 32. 

Appendix E: Additional figures
See Figs. 22, 23, 24.

(D.9)

Y (τ ,ω) =
1

√
N

N−1∑

q=0

H0 X(ωq) W̃ (ω − ωq) e
iωqtkτ0

= H0 X(τ ,ω).
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